Projective Bundle Theorem in MW-Motives

Nanjun Yang
Tsinghua University
October 9, 2020

Motivation

Suppose $0 \leq i \leq n$, we have:

$$
H^{i}\left(R^{n}, Z\right)= \begin{cases}Z & \text { if } i=0 \text { or } i=n \text { and } n \text { is odd } \\ Z / 2 Z & \text { if } i>0 \text { is even } \\ 0 & \text { else. }\end{cases}
$$

Theorem (Fasel, 2013)

$$
\widetilde{C H}^{i}\left(\mathrm{P}^{n}\right)= \begin{cases}G W(k) & \text { if } i=0 \text { or } i=n \text { and } n \text { is odd } \\ Z & \text { if } i>0 \text { is even } \\ 2 Z & \text { else }\end{cases}
$$

Motivation

Suppose $0 \leq i \leq n$, we have:

$$
H^{i}\left(R P^{n}, Z\right)= \begin{cases}Z & \text { if } i=0 \text { or } i=n \text { and } n \text { is odd } \\ Z / 2 Z & \text { if } i>0 \text { is even } \\ 0 & \text { else. }\end{cases}
$$

Theorem (Fasel, 2013)

$$
\widetilde{C H}^{i}\left(\mathrm{P}^{n}\right)= \begin{cases}G W(k) & \text { if } i=0 \text { or } i=n \text { and } n \text { is odd } \\ Z & \text { if } i>0 \text { is even } \\ 2 Z & \text { else }\end{cases}
$$

Question

- A motivic explanation?
- How about projective bundles?

Chow Groups

- $C H^{\mathrm{n}}(X)=\mathrm{Z}$ \{cycles of codimension $\left.n\right\} /$ rational equivalence:

$$
\bigoplus_{\mathrm{y} \in \mathrm{X}(\mathrm{n}-1)} k(y)^{*} \xrightarrow{\text { div }} \bigoplus_{\mathrm{y} \in \mathrm{X}(\mathrm{n})} \mathrm{Z} \longrightarrow 0 .
$$

- Projective bundle theorem:

$$
C H^{\mathrm{n}}(\mathrm{P}(E))=\bigoplus_{\mathrm{i}=0}^{\mathrm{rk}(\mathrm{E})-1} C H^{\mathrm{n}-\mathrm{i}}(X) \quad \mathrm{P}(E)=\bigoplus_{\mathrm{i}=0}^{\mathrm{rk}(\mathrm{E})-1} X(i)[2 i] .
$$

- Chern class:

$$
c_{\mathrm{i}}(E) \in C H^{\mathrm{i}}(X)
$$

Chow-Witt Groups

Suppose X is smooth and $L \in \operatorname{Pic}(X)$. We have the Gersten complex:

$$
\oplus_{y \in X^{(n-1)}} K_{1}^{M W}\left(k(y), L \otimes \Lambda_{y}^{*}\right) \xrightarrow{\text { div }} \oplus_{y \in X(n)} \mathbf{G W}\left(k(y), L \otimes \Lambda_{y}^{*}\right) \xrightarrow{\operatorname{div}} \oplus_{y \in X(n+1)} \mathbf{W}\left(k(y), L \otimes \Lambda_{y}^{*}\right) .
$$

Chow-Witt Groups

- Suppose X is celluar. We have a Cartesian square:

- Pontryagin class
- Bockstein image of Stiefel-Whitney classes
- Orientation class

Four Motivic Theories

- Suppose $\mathbf{K}=M W, M, W, M / 2$. We have a homotopy Cartesian:

Definition

Define the category of effective K-motives over S with coefficients in R :

$$
D M_{\mathrm{k}}^{\text {eff }}=D\left[\left(X \times \mathrm{A}^{1} \longrightarrow X\right)^{-1}\right]
$$

where D is the derived category of Nisnevich sheaves with K-transfers.

- $\mathbf{K}=M W \Longrightarrow$ Milnor-Witt Motives
- $\mathbf{K}=M \Longrightarrow$ Voevodsky's Motives

Four Motivic Theories

Theorem (BCDFØ, 2020)
For any $X \in S m / S$ and $n \in N$, we have

$$
[X, \mathrm{Z}(n)[2 n]]_{\mathrm{K}}=\widetilde{C H}^{\mathrm{n}}(X), C H^{\mathrm{n}}(X), C H^{\mathrm{n}}(X) / 2
$$

if $\mathbf{K}=M W, M, M / 2$.
Theorem (Cancellation, BCDFØ, 2020)
Suppose $S=p$. For any $A, B \in D M_{\mathrm{K}}^{\mathrm{eff}}$, we have

$$
[A, B]_{\mathrm{K}} \xrightarrow{\otimes(1)}[A(1), B(1)]_{\mathrm{K}} .
$$

Basic Calculations

- $\mathrm{A}^{\mathrm{n}}=\mathrm{Z}$.
- $\mathrm{G}_{\mathrm{m}}=\mathrm{Z} \oplus \mathrm{Z}(1)[1]$.
- $\mathrm{A}^{\mathrm{n}} \backslash 0=\mathrm{Z} \oplus \mathrm{Z}(n)[2 n-1]$.
- $P^{1}=Z \oplus Z(1)[2]$.
- $\mathrm{A}^{\mathrm{n}} /\left(\mathrm{A}^{\mathrm{n}} \backslash 0\right)=\mathrm{P}^{\mathrm{n}} /\left(\mathrm{P}^{\mathrm{n}} \backslash p t\right)=\mathrm{Z}(n)[2 n]$.
- $E \cong X$ for any A^{n}-bundle E over X.

Hopf Map η

Definition

The multiplication map $G_{m} \times G_{m} \longrightarrow G_{m}$ induces a morphism

$$
\mathrm{G}_{\mathrm{m}} \otimes \mathrm{G}_{\mathrm{m}} \longrightarrow \mathrm{G}_{\mathrm{m}}
$$

It's the suspension of a (unique) morphism $\eta \in\left[\mathrm{G}_{\mathrm{m}}, \mathbb{1}\right]$, which is called the Hopf map.
It's also equal, up to a suspension, to the morphism

$$
\begin{array}{ccc}
\mathrm{A}^{2} \backslash 0 & \longrightarrow & \mathrm{P}^{1} \\
(x, y) & \longrightarrow & {[x: y]}
\end{array} .
$$

Remark

The $\eta=0$ if $K=M, M / 2$, but never zero if $K=M W, W!$

$$
\pi_{3}\left(S^{2}\right)=\mathbf{Z} \cdot \text { Hopf }
$$

MW-Motive of P^{n}

Theorem (Y)

Suppose $n \in \mathrm{~N}$ and $p: \mathrm{P}^{\mathrm{n}} \longrightarrow$ pt.
(1) If n is odd, there is an isomorphism

$$
\mathrm{P}^{\mathrm{n}} \xrightarrow{\left(\mathrm{p}, \mathrm{c}_{\mathrm{n}}^{2 \mathrm{i}-1}, \mathrm{th}_{\mathrm{n}+1}\right)} R \oplus \bigoplus_{\mathrm{i}=1}^{\frac{\mathrm{n}-1}{2}} \operatorname{cone}(\eta)(2 i-1)[4 i-2] \oplus R(n)[2 n] .
$$

(2) If n is even, there is an isomorphism

$$
\mathrm{P}^{n} \xrightarrow{\left(\mathrm{p}, \mathrm{c}_{\mathrm{n}}^{2 i-1}\right)} R \oplus \bigoplus_{i=1}^{\frac{n}{2}} \operatorname{cone}(\eta)(2 i-1)[4 i-2] .
$$

Here $t h_{n+1}=i_{*}(1)$ for some rational point $i: p t \longrightarrow \mathrm{P}^{n}$.
$\mathrm{c}_{n}^{2 i-1}: \mathbf{P}^{n} \longrightarrow \operatorname{cone}(\eta)(2 \mathbf{i}-1)[4 \mathbf{i}-2]$

We have cone $(\eta)=\mathbf{Z} \oplus \mathbf{Z}(1)[2]$ in $D M_{M}^{\text {eff }}$ since $\eta=0$. This implies

$$
\left[\mathrm{P}^{\mathrm{n}}, \text { cone }(\eta)(j)[2 j]\right]_{\mathrm{M}}=C H^{\mathrm{j}}\left(\mathrm{P}^{\mathrm{n}}\right) \oplus C H^{\mathrm{j}+1}\left(\mathrm{P}^{\mathrm{n}}\right)
$$

We have an adjunction $\gamma^{*}: D M_{M W}^{\text {eff }} \quad D M_{M}^{\text {eff }}: \gamma_{*}$.
Theorem (Y)
Suppose $j=2 i-1 \leq n-1$. The morphism

$$
\begin{array}{ccc}
\gamma^{*}: \quad\left[\mathbf{P}^{\mathrm{n}}, \text { cone }(\eta)(j)[2 j]\right]_{\mathrm{MW}} & \rightarrow & {\left[\mathrm{P}^{\mathrm{n}}, \text { cone }(\eta)(j)[2 j]\right]_{\mathrm{M}}} \\
\mathrm{c}_{\mathrm{n}} & \nrightarrow & \left(c_{1}(O(1))^{\mathrm{k}}, c_{1}(O(1))^{\mathrm{k}+1}\right)
\end{array}
$$

is injective with coker $\left(\gamma^{*}\right)=\mathbf{Z} / 2 Z$.

Splitness in MW-Motives

Definition

We say $X \in S m / k$ splits in $D M_{M W}^{\text {eff }}$ if it's isomorphic to the form

Goal

Suppose E is a vector bundle. Find out the global definition of $c_{n}^{2 \mathrm{i}-1}$ and $t h_{n+1}$ on $\mathrm{P}(E)$.

Motivic Stable Homotopy Category SH (k)

- $\left\{\mathrm{P}^{1}-\right.$ spectra of simp. Nis. sheaves $\} /$ stable A^{1}-equivalences.
- E-cohomologies:

$$
\left[\Sigma^{\infty} X_{+}, E(q)[p]\right]_{\mathcal{S H}(\mathrm{k})}=E^{\mathrm{p}, \mathrm{q}}(X)
$$

- $H^{\mathrm{n}}\left(X, \mathbf{K}_{\mathrm{n}}\right)=H_{\mathrm{K}}^{2 \mathrm{n}, \mathrm{n}}(X)=C H^{\mathrm{n}}(X), \widetilde{C H}^{\mathrm{n}}(X), \cdots$, if $E=H_{\mu} Z, H \tilde{Z}, \cdots$.
- ($\left.D M_{\mathrm{MW}}\right)_{\mathrm{Q}}=\mathrm{SH}_{\mathrm{Q}}$.

Motivic Cohomology Spectra

Definition

Every motivic theory corresponds to a spectrum in $\mathrm{SH}(k)$, namely

The spectrum represents the cone (η) (induces the same cohomologies) of, for example, MW-motive is denoted by $H \widetilde{Z} / \eta$.
$\mathrm{H} \tilde{Z} / \eta$

Theorem (Y)
We have a distinguished triangle

$$
\mathrm{P}^{1} \wedge H_{\mu} Z \rightarrow H \tilde{Z} / \eta \longrightarrow H_{\mu} Z \oplus H_{\mu} Z / 2[2] \longrightarrow \mathrm{P}^{1} \wedge H_{\mu} Z[1] .
$$

Remark

The triangle doesn't split since applying $\pi_{2}()_{0}$ we get an exact sequence of Nisnevich sheaves

$$
0 \rightarrow \mathrm{Z} / 2 \mathrm{Z} \rightarrow 0^{*} \rightarrow 2 O^{*} \rightarrow 0
$$

$\eta_{M W}^{i}(\mathrm{X})$

Definition

$$
\eta_{\mathrm{MW}}^{\mathrm{i}}(X):=[X, \text { cone }(\eta)(i)[2 i]]_{\mathrm{MW}}=\left[\Sigma^{\infty} X_{+}, H \tilde{\mathrm{Z}} / \eta(i)[2 i]\right]_{\mathcal{H}(\mathrm{k})} .
$$

Theorem (Y)
If $R=\mathrm{Z}$ and ${ }_{2} \mathrm{CH}^{\mathrm{i}+1}(\mathrm{X})=0$, we have a natural isomorphism

$$
\theta^{\mathrm{i}}: C H^{\mathrm{i}}(X) \oplus C H^{\mathrm{i}+1}(X) \longrightarrow \eta_{\mathrm{MW}}^{\mathrm{i}}(X) .
$$

Corollary

If $R=\mathrm{Z}\left[\frac{1}{2}\right]$, we have a natural isomorphism

$$
\theta^{i}: C H^{i}(X)\left[\frac{1}{2}\right] \oplus C H^{i+1}(X)\left[\frac{1}{2}\right] \rightarrow \eta_{\text {MW }}^{i}(X)
$$

for any $X \in S m / k$.

a^{k}, b^{k}

Definition

Suppose $n \geq k+1$ and k is odd. Define $a^{k}, b^{k} \in Z$ by

$$
\begin{aligned}
& C H^{\mathrm{k}}\left(\mathrm{P}^{\mathrm{n}}\right) \oplus C H^{\mathrm{k}+1}\left(\mathrm{P}^{\mathrm{n}}\right) \quad \xrightarrow{9^{\mathrm{k}}} \quad\left[\mathrm{P}^{\mathrm{n}}, \text { cone }(\eta)(k)[2 k]\right]_{\mathrm{Mw}} \\
& \left(a^{\mathrm{k}} c_{1}(O(1))^{\mathrm{k}}, b^{\mathrm{k}} c_{1}(O(1))^{\mathrm{k}+1}\right) \quad 7 \rightarrow \quad c_{n}^{k}
\end{aligned}
$$

They are independent of n.

$\mathrm{c}(\mathrm{E})^{k}: \mathrm{P}(\mathrm{E}) \longrightarrow$ cone $(\eta)(\mathrm{k})[2 \mathrm{k}]$

Definition

Suppose E is a vector bundle of rank n over $X, R=Z,{ }_{2} \mathrm{CH}^{*}(X)=0$ and $k \leq n-2$ is odd. Define $c(E)^{k}$ by

$$
\underset{\left(a^{k} c_{1}(O(1))^{k}, b^{k} c_{1}(O(1))^{k+1}\right)}{\left.C H^{k}(E)\right) \oplus C H^{k+1}(P(E))} \xrightarrow{7 \rightarrow} \quad \underset{c(E)^{\theta^{k}}}{ } \quad[\mathrm{P}(E), \text { cone }(\eta)(k)[2 k]]_{M w}
$$

If $R=\mathrm{Z}\left[\frac{1}{2}\right], c(E)^{\mathrm{k}}$ is defined for all $X \in S m / k$.

Projective Orientability

Recall $S L^{\text {C }}$-bundles are vector bundles E over X such that

$$
\operatorname{det}(E) \in 2 \operatorname{Pic}(X)
$$

Definition

Let E be an $S L^{\text {C }}$-bundle with even rank n over X. It's said to be projective orientable if there is an element $t h(E) \in \widetilde{C H}^{\mathrm{n}-1}(\mathrm{P}(E))$ such that for any $x \in X$, there is a neighbourhood U of x such that $\left.E\right|_{U}$ is trivial and

$$
\left.\operatorname{th}(E)\right|_{\mathrm{u}}=p^{*} t h_{\mathrm{n}},
$$

where $p: \mathrm{P}^{\mathrm{n}-1} \times U \longrightarrow \mathrm{P}^{\mathrm{n}-1}$.

Projective Orientability

- In Chow rings, we can always let $t h(E)=c_{1}\left(O_{P(E)}(1)\right)^{\mathrm{n}-1}$. But this doesn't work for Chow Witt rings!
- If E has a quotient line bundle, it's projective orientable.
- If E has a quotient bundle being projective orientable, it's projective orientable.
- Further characterization?

Projective Bundle Theorem

Theorem (Y)

Let E be a vector bundle of rank n over X. Suppose ${ }_{2} \mathrm{CH}^{*}(X)=0$ and X admits an open covering $\left\{U_{\mathrm{i}}\right\}$ such that $\mathrm{CH}^{\mathrm{j}}\left(U_{\mathrm{i}}\right)=0$ for all $j>0$ and i. Denote by $p: \mathrm{P}(E) \rightarrow X$.
(1) If n is even and E is projective orientable, the morphism

$$
\left(p, p \quad c(E)^{2 \mathrm{i}-1}, p \quad \operatorname{th}(E)\right)
$$

$$
\mathrm{P}(E) \rightarrow X \oplus \bigoplus_{i=1}^{\frac{n}{2}-1} X \otimes \operatorname{cone}(\eta)(2 i-1)[4 i-2] \oplus X(n-1)[2 n-2]
$$

is an isomorphism.
(2) If n is odd, there is an isomorphism

$$
\mathrm{P}(E) \xrightarrow{\left(\mathrm{p}, \mathrm{p} \mathrm{c}(\mathrm{E})^{2 i-1}\right)} X \oplus \bigoplus_{i=1}^{\frac{\mathrm{n}-1}{2}} x \otimes \operatorname{cone}(\eta)(2 i-1)[4 i-2] .
$$

Projective Bundle Theorem

Corollary

Let E is a vector bundle of odd rank n over X. If X is quasi-projective, we have

$$
\mathrm{P}(E) \cong X \oplus \bigoplus_{i=1}^{\frac{n-1}{2}} X \otimes \operatorname{cone}(\eta)(2 i-1)[4 i-2] .
$$

In particular, we have $\left(k=\min \left\{b^{i+1} c, \frac{n-1}{2}\right\}\right)$

$$
\widetilde{C H}^{i}(P(E))=\widetilde{C H}^{i}(X) \oplus \bigoplus_{j=1}^{k} \widetilde{C H}^{i-2 j+2}\left(X \times \mathrm{P}^{2}\right) / \widetilde{C H}^{i-2 j+2}(X) .
$$

Projective Bundle Theorem

Theorem (Y)

Let E be a vector bundle of rank n over X. Suppose $2 \in R^{\times}$. Denote by $p: \mathrm{P}(E) \longrightarrow X$. If n is even and E is projective orientable, the morphism $\left(p, p \quad c(E)^{2 \mathrm{i}-1}, p \quad \operatorname{th}(E)\right)$

$$
\mathrm{P}(E) \longrightarrow X \oplus \bigoplus_{i=1}^{\frac{n}{2}-1} X \otimes \operatorname{cone}(\eta)(2 i-1)[4 i-2] \oplus X(n-1)[2 n-2]
$$

is an isomorphism.
In particular, we have $\left(k=\min \left\{b \frac{i+1}{2} c, \frac{n}{2}-1\right\}\right)$
$\widetilde{C H}^{\mathrm{i}}(\mathrm{P}(E))=\widetilde{C H}^{\mathrm{i}}(X) \oplus \bigoplus_{\mathrm{j}=1}^{\mathrm{k}} \widetilde{C H}^{\mathrm{i}-2 \mathrm{j}+2}\left(X \times \mathrm{P}^{2}\right) / \widetilde{C H}^{\mathrm{i}-2 \mathrm{j}+2}(X) \oplus \widetilde{C H}^{\mathrm{i}-\mathrm{n}+1}(X)$
after inverting 2.

Blow-ups

Theorem (Y)
Suppose Z is smooth and closed in $X, n:=\operatorname{codim}_{X}(Z)$ is odd and Z is quasi-projective. We have

$$
B I_{Z}(X) \cong X \oplus \bigoplus_{i=1}^{\frac{n-1}{2}} Z \otimes \operatorname{cone}(\eta)(2 i-1)[4 i-2]
$$

In particular, we have $\left(k=\min \left\{b^{i+1} \frac{1}{2} c, \frac{n-1}{2}\right\}\right)$

$$
\widetilde{C H}^{i}\left(B I_{Z}(X)\right)=\widetilde{C H}^{i}(X) \oplus \bigoplus_{j=1}^{k} \widetilde{C H}^{i-2 j+2}\left(Z \times P^{2}\right) / \widetilde{C H}^{i-2 j+2}(Z)
$$

Thank you!

